If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2x^2-18x+7=0
a = -2; b = -18; c = +7;
Δ = b2-4ac
Δ = -182-4·(-2)·7
Δ = 380
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{380}=\sqrt{4*95}=\sqrt{4}*\sqrt{95}=2\sqrt{95}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{95}}{2*-2}=\frac{18-2\sqrt{95}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{95}}{2*-2}=\frac{18+2\sqrt{95}}{-4} $
| 6x+9=135-10x | | b-4b=10 | | 7x-9x+4=16 | | 0=x^2+8x+161 | | -2x^2+76x-558=0 | | x/100=27/30 | | -2x^2+76x-710=0 | | 5(x^2)-2x=16 | | u²-12u-13=0 | | 39=8x–1 | | +5(8x+4)=300 | | -4.5x*2+72=0 | | +5(8x+4)=3000 | | y-(-19)=-16 | | x-(-19)=-11 | | 2y-3y+4=21 | | (2n+3)=75 | | b3+9=10 | | 5t-4.3=11.7 | | (4x)=2x–2 | | c−(-3)=15c= | | 19=−4y−(3−4y)+3 | | 5=9x(9x-5) | | 5=9x−(9x−5) | | 8*2x^-6=0 | | 22=8e | | 51=t-16 | | e-5=27 | | x=1.64*4 | | 5=-9-4x | | 1.64*x=4 | | 1.64´x=4 |